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Purpose. To build and test a computational model for predicting
small molecule solubility, to improve the cost-effectiveness of the
selection of vendor compounds suitable for nuclear magnetic reso-
nance (NMR) screening.
Methods. A simple recursive partitioning decision tree–based classi-
fication model was generated utilizing “off-the-shelf” commercial
software from Accelrys Inc., with a training set of 1992 compounds
based on a series of calculated topologic and physical properties. The
predictive ability of the decision tree was then assessed by employing
it to classify a test set of 2851 vendor compounds, and the classifica-
tion was subsequently used to guide the purchase of 686 compounds
for the purpose of NMR screening.
Results. When the decision tree was used to guide purchasing, the
percentage of “acceptable” compounds suitable for NMR screening
doubled compared with the use of a simple cLogP cutoff, improving
the successful selection rate from 25% to 50%.
Conclusions. A simple recursive partitioning decision tree may suc-
cessfully be used to improve cost-effectiveness by reducing the wast-
age associated with the unnecessary purchase of vendor compounds
unsuitable for NMR screening because of insolubility.
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INTRODUCTION

In the biopharmaceutic context solubility is a critical fac-
tor in the selection of compounds suitable for research.

Solubility is known to be dependent on temperature, po-
larity, and molecular size. Molecular shape has also been im-
plicated as a factor in determining the readiness of solvation,
but the relationship is clearly not straightforward.

Many pharmaceutical tests, such as high-throughput
screening of compounds, depend on the solubility of test com-
pounds [in a solvent such as dimethyl sulfoxide (DMSO) or
aqueous buffer] to obtain results in an effective and accurate
manner. Attempting to perform tests on insoluble compounds
is wasteful of the tests and an unnecessary expense in the
acquisition process.

To avoid this solubility pitfall (which seems to be an
industry-wide problem), an efficient virtual compound-
screening method is required that can evaluate the likely solu-
bility of compounds before their purchase. Such a method
could streamline the screening process and significantly re-
duce the monetary outlay required for screening.

For example, Amgen employs nuclear magnetic reso-
nance (NMR) as part of its discovery process. In order for an
NMR spectrum to distinguish binding, the compounds used
for screening must be soluble and be in monomer form. Al-
though many computational models are available for predict-
ing solubility (1–13), most have the following disadvantages:

1. They contain training datasets with only a small num-
ber of drug-like molecules.

2. They cannot predict whether a given compound exists
as a monomer or as an aggregate.

The computational model reported in this paper is de-
rived from a recursive partitioning decision tree, available as
a commercial software package. The model helps to prioritize
compounds before purchase and yields a larger proportion
with improved levels of solubility as determined by NMR.

The recursive partitioning decision tree is a useful statis-
tical classification tool, allowing (in this instance) a relatively
small group of molecular compounds with well-characterized
properties to be used to generate a set of classification rules.
Those rules may then be applied to assist in the selection of
compounds from a less well-characterized superset.

Fig. 1 illustrates a fragment of an example decision tree
derived from a set of data with known parameters
X1,X2,X3. . .Xn falling into classes A,B,C,. . .Z.

At each decision point in the process, the data are split
into two subgroups based on (usually) the value of a particu-
lar parameter. Each subgroup is then similarly split until fur-
ther splitting is not possible or a threshold value for stopping
is reached. The decision as to which parameter to use, and the
appropriate value to use to determine a split, are obtained by
an automated statistical analysis of the entire data set.

Using the recursive partitioning decision tree model, we
have found that the increase in the rate of successful selection
of suitable vendor compounds is sufficiently large (rising from
25% using a simple cLogP cutoff threshold to 50% using the
model) that this approach is likely to have a significant impact
on the cost-effectiveness of compound purchasing. The in-
crease is achieved using off-the-shelf software suitable for
in-house research, utilizing a single workstation, and without
the necessity of specialist tuning of the default parameters.

MATERIALS AND METHODS

Hardware and Software

The hardware comprised a Silicon Graphics® Octane™
workstation with a single R10000™ cpu running at 250 MHz.

The software included the operating system—IRIX64
Release 6.5—and the Accelrys Inc. application Cerius2 ver-
sion 4.5.

1 Research Informatics, Amgen Inc., Thousand Oaks, California
91320.

2 Molecular Structure, Amgen Inc., Thousand Oaks, California
91320.

3 To whom correspondence should be addressed. (email: xxia@
amgen.com)

ABBREVIATIONS: AlogP98, the log of the partition coefficient
(see cLogP), atom-type value; cLogP, the log of the partition coeffi-
cient—the equilibrium concentration in a nonpolar solvent (octanol)
divided by the equilibrium concentration in a polar solvent (usually
water), expressed as a logarithmic value; NMR, nuclear magnetic
resonance; QSAR, quantitative structure–activity relationship.
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Molecular Descriptors

Molecular descriptors (QSAR and Daylight Fingerprint
1024; see Table I a–f) were provided with Cerius2, although
the use of the Daylight Fingerprint required the purchase of
a separate license from Daylight Inc.

The QSAR set includes the commonly used Lipinski de-
scriptors (8) (see Table Ia,b) in addition to 18 spatial indices,
28 topological indices, and nine information content indices.

The spatial indices (Table Ic) are descriptors pertaining
to the space occupied by molecules, measured in terms of
points, lines, surfaces, volumes, and so on. They include mo-
lecular volume and the Stanton and Jurs set (14), which com-
bines shape and electronic information to characterize mol-
ecules by calculating the mapping of atomic partial charges on
solvent-accessible surface areas of individual atoms. The
FPSA descriptors are derived from the division of the PPSA
descriptors by the SASA descriptor.

The topological indices (Table Id) are two-dimensional
(2D) descriptors based on graph theory concepts (15–17).
They help to differentiate molecules according to size, degree
of branching, flexibility, and overall shape. They comprise
Kier’s Shape and Alpha-Modified Shape Indices, the Molecu-
lar Flexibility Index, the Kier and Hall Molecular Connectiv-
ity Index, the Kier and Hall Valence-Modified Connectivity
Index, the Kier and Hall Subgraph Count Indices, the Wiener
Index, the Zagreb Index, and one of two Balaban Indices.

The information content indices (Table Ie) are derived
from a view of molecules as structures that can be partitioned
into subsets of elements that are in some sense equivalent.
The definition of “equivalent” depends on the particular de-
scriptor.

They comprise the Multigraph Information Content In-
dices (consisting of information content, bonding information
content, complementary information content, structural in-
formation content), the edge adjacency/magnitude, the edge
distance/magnitude, the information of atomic composition
index, the vertex adjacency/magnitude, and the vertex dis-
tance/magnitude.

Finer detail may be obtained from Accelrys’ product
documentation.

Selection of the Training Set

We tested the solubility of 1992 compounds using NMR-
based target-binding assays and then used these compounds
as the training set to build a predictive model. Of the 1992
compounds, 981 were found to be soluble, and 1011 were
insoluble. Computational experiments were devised to assess
the diversity of the compounds in the training set. Compound
diversity was defined by considering responses to the follow-
ing questions.

How Many Chemical Classes Are in the Training Set?

ClassPharmer™ from Bioreason Inc. was used to tally
the chemical classes. Homogeneity level and redundancy
level were set to medium for generating the classes.

Do Similar Compounds Dominate the Training Set?

The similarity of pairs of compounds was measured by
performing a near-neighbor calculation on each molecule in
the training set as follows: For a given compound A, the
Tanimoto distance between A and each of the other com-
pounds in the data set was calculated. Daylight Fingerprint
(18) was used as the structural descriptor. Any compound for
which the Tanimoto distance to A was less than 0.25 was
defined as A’s near neighbor (NN). The count of near neigh-
bors thus defined for the data set is summarized in Table II.

Molecular Descriptors and Model Building

Once diversity was established, for each compound the
following descriptors were calculated and used as indepen-
dent variables within Cerius2: Daylight Fingerprint (1024 bits)
(18) and 60 QSAR default descriptors (19), brief details of
which have already been given (Table I). A recursive parti-
tioning decision tree was constructed using Cerius2 version
4.5 (19) with the default settings: weight classes equally; score
splits using Gini impurity; perform moderate pruning; nodes
must contain a minimum of 1% of the samples; limit knots per
variable to 20; maximum tree depth 10. Fig.2 shows a sample
screenshot of the defaults.

The process is quite straightforward and does not require
specialized knowledge. The application is started, the file con-
taining the training set data is read in, the QSAR and Day-
light Fingerprint descriptors are selected, the relevant prop-
erties are calculated, and the statistical method—recursive
partitioning decision tree (RP)—is selected. The set of mol-
ecules to be used for training is selected (invariably the entire
training set), and the model begins training using just the
default parameters. The whole process is finished in under 1
min.

Once complete, the decision tree is available for viewing
in Cerius2 and may be applied to a test set of molecules. As
each molecule is classified, its probability of belonging to a
particular class is displayed along with its position on the tree
(the leaf node). A “real world” example of such a tree is given
in Fig. 3.

Prediction

The tree was applied to sets of vendor compounds to
determine their solubility, and compounds predicted to be
soluble were purchased. Near-neighbor calculations, similar

Fig. 1. Fragment of an example recursive partitioning decision tree.
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Table I. QSAR Molecular Descriptors Utilized for Training

Descriptor class Descriptor(s) Description

(a) Physicochemical AlogP98 The log of the partition coefficient
(b) Structural Rotbonds Number of rotatable bonds

Hbond acceptors Number of hydrogen bond acceptors
Hbond donors Number of hydrogen bond donors
MW Molecular weight

(c) Spatial Vm Molecular volume
Jurs:

PPSA-1 Partial positive surface area
PPSA-2 Total charge-weighted positive surface area
PPSA-3 Atomic charge-weighted positive surface area
PNSA-1 Partial negative surface area
PNSA-2 Total charge-weighted negative surface area
PNSA-3 Atomic charge-weighted negative surface area
DPSA-1 Difference in charged partial surface areas
DPSA-2 Difference in total charge-weighted surface areas
DPSA-3 Difference in atomic charge-weighted surface areas
FPSA-1 Partial positive surface area/SASA*
FPSA-2 Total charge-weighted positive surface area/SASA*
FPSA-3 Atomic charge-weighted positive surface area/SASA*
FNSA-1 Partial negative surface area/SASA*
FNSA-2 Total charge-weighted negative surface area/SASA*
FNSA-3 Atomic charge-weighted negative surface area/SASA*
TPSA Total polar surface area
SASA* Total molecular solvent-accessible surface area

(d) Topological: Kier and Hall Shape
Kappa-1 First order
Kappa-2 Second order
Kappa-3 Third order

Alpha-modified shape
Kappa-1-AM First order
Kappa-2-AM Second order
Kappa-3-AM Third order
PHI Molecular flexibility index

Molecular connectivity index
CHI-0 Zero order
CHI-1 First order
CHI-2 Second order
CHI-3_P Third order, path
CHI-3_C Third order, cluster
CHI-3_CH Third order, chain

Valence-modified connectivity index
CHI-V-0 Zero order
CHI-V-1 First order
CHI-V-2 Second order
CHI-V-3_P Third order, path
CHI-V-3_C Third order, cluster
CHI-V-3_CH Third order, chain

Subgraph count indices
SC-0 Zero order
SC-1 First order
SC-2 Second order
SC-3_P Third order, path
SC-3_C Third order, cluster
SC-3_CH Third order, chain

Wiener Wiener index
Zagreb Zagreb index
JX Balaban index

(e) Information Content: Multigraph
IC Information content
BIC Bonding information content
CIC Complementary information content
SIC Structural information content
E-ADJ-mag Edge adjacency/magnitude
E-DIST-mag Edge distance/magnitude
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to those described for the training set, were also performed
on the purchased compounds to determine their diversity,
both in comparison with each other and in comparison with
the compounds in the training set. The results are listed in
Table II.

The resulting sets of purchased compounds were then
assessed using NMR to determine solubility. We define ac-
ceptable solubility as (a) being soluble to 1 �M in phosphate-
buffered saline (PBS: 0.9% NaCl, 10 mM sodium phosphate/
pH 7.2) and 6% dimethyl sulfoxide (DMSO) and (b) provid-
ing an acceptable NMR spectrum.

RESULTS AND DISCUSSION

It is essential that a predictive model is built from a het-
erogeneous training data set, i.e., a data set that is represen-
tative, reliable, and informative. Because the data set was
generated in our NMR laboratory in a consistent manner,
reliability is not an issue.

However, steps need to be taken to ensure that the com-

pounds in the data set represent a variety of chemical classes
of interest.

The first step we took was to confirm diversity, and the
results showed the data set contained 299 chemical classes,
and more than half of the compounds did not have near
neighbors based on the 0.25 Tanimoto distance cutoff (Table
II).

The second step was to develop a model using a “ma-
chine learning” approach. We elected to use a decision tree as
our modeling tool for the following reasons:

1. Rapid training, even with large numbers of variables
or records. In this case, we had over 1000 independent vari-
ables.

2. Insensitivity to outliers. Unlike some methods, such as
regression, that tend to draw the outliers closer to the model,
with this approach any outliers usually do not change the split
position.

3. Ready comprehension of the model. Splitting rules
are displayed, and the most important variables are usually at
the top of the tree.

The third step was the deployment of the tree. When the
tree was applied to a set of 2851 preselected vendor com-
pounds, all of which possessed a desired scaffold, a total of
686 compounds from two sets (Purchased Set 1 and Pur-
chased Set 2) were identified as suitable for purchase. Table
II shows that the purchased compounds are significantly di-
verse from each other (rows 2 and 3) and from compounds in
the training set (rows 4 and 5). We were encouraged by the
fact that the tree did not just select compounds similar to the
training set.

Previously we had used cLogP < 3.5 as the cutoff when
selecting compounds for purchasing and screening. By that
approach an average of 23% of purchased compounds was
found to be soluble as indicated by NMR spectra. When we
tested the two new sets proposed by the recursive partitioning
tree, an average twofold enrichment rate (∼50%) of soluble
compounds was observed in all purchases. The results are
summarized in Table III.

Examples

To make the demonstration of examples more manage-
able, the complex decision tree in Fig. 3 is divided into two
separate trees based on the first split (AlogP98): Fig. 4a
shows the path followed when, for a given compound,
AlogP98 < 3.47, and Fig. 5a shows the path followed when,
for a given compound, AlogP98 � 3.47. By convention, a
“True” response to any given split follows the branch to the
right, and a “False” response to any given split follows the
branch to the left. In both figures, irrelevant leaf nodes
have been colored gray to more readily contrast the relevantFig. 2. Sample screenshot showing model default settings.

Table I. Continued

Descriptor class Descriptor(s) Description

IAC-total Information of atomic composition index
V-ADJ-mag Vertex adjacency/magnitude
V-DIST-mag Vertex distance/magnitude

(f) Fingerprint DYFP-1024 Daylight Fingerprint 1024

*SASA, solvent-accessible surface area.
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Table II. Diversity (Near-Neighbor Summary) of the Training and Purchased Sets

Total number
of compounds NN � 0 NN � 1–5 NN � 5–10 NN > 10

Number of
chemical classes

Training set (self) 1992 1159 (58%) 716 (36%) 101 (5%) 16 (1%) 299
Purchased set 1 (self) 468 285 (61%) 170 (36%) 9 (2%) 4 (1%) 68
Purchased set 2 (self) 218 171 (78%) 47 (22%) 0 0 62

Purchased set 1 vs. training set 468 427 (91%) 39 (8%) 2 (1%) 0
Purchased set 2 vs. training set 218 153 (70%) 54 (25%) 4 (2%) 7 (3%)

Table III. Comparison of Pass Ratios for Recursive Partitioning Decision Tree vs. cLogP

Number of
compounds purchased

Number of
compounds passed

Pass
ratio

Threshold: cLogP < 3.5
Prior purchased set 1 210 48 23%
Prior purchased set 2 188 41 22%
Prior purchased set 3 2561 613 24%

Threshold: recursive partitioning decision tree
Purchased set 1 468 232 50%
Purchased set 2 218 128 59%

Fig. 3. Real-world example of a decision tree.

Fig. 4. Decision path (a) and structure (b) for a candidate compound that is classified as soluble.
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path followed in classifying a candidate compound. Figures 4b
and 5b show the respective structures of the example classi-
fied compounds.

CONCLUSIONS

The recursive partitioning decision tree generated with
the aid of the Cerius2 package has successfully improved the
prediction of solubility and helped to avoid the unnecessary
purchase of compounds unsuitable for NMR screening. The
model was easy to construct, understand, and deploy. The
only disadvantages of this method—which are true for all
decision trees—are:

1. The tree model can be subject to local minima. Every
tree is dependent on the first split and is not necessarily guar-
anteed to arrive at the best model.

2. The tree is susceptible to instability triggered by small
changes because decision boundaries are rectilinear. By add-
ing or deleting a few records, one may obtain a very different
tree model. Our decision to apply diversity criteria to our
model does, however, reduce the risk of undue sensitivity.

The success rate of the predictions may appear to be low,
but it is sufficient for our needs, and it is, to some degree,
expected.

The model demonstrates that it may be usefully applied
to guide compound purchasing, although the specific decision
tree generated by the training set used here is almost certainly
applicable only to this particular instance.

Although it doubles the previous successful selection rate
for suitably soluble compounds, the model is clearly not ca-
pable, in its present form, of predicting solubility class in
100% of cases. This may result from a variety of factors,
including—but not limited to—the size of the training set, the
range of parameters available for classification, measures of
dissolution and other crystal-related phenomena, and the sta-
tistical analysis leading to the first split.

The evident complexity of the generated decision tree
hints at the complexity of the process of solvation and may
indicate that more (or at least different) parameters may need
to be included in the model in order to improve still further its
predictive capabilities.

Further study is in progress, and results will be reported
in due course.
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